
2/22/2018

Outpost PMM
Add-on Implementation Guide

February 2018
Version 1.1

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 ii

Contents

1 ABOUT ADD-ONS .. 1

1.1 INTRODUCTION ... 1
1.2 WHAT IS AN ADD-ON? ... 1
1.3 ADD-ONS AND OUTPOST .. 1
1.4 DEFINING AN ADD-ON ... 2
1.5 NOTES, ASSUMPTIONS, AND DISCLAIMERS .. 2
1.6 FIND AN ERROR?... 2

2 SET UP OUTPOST TO CALL THE ADD-ON .. 3

2.1 INTRODUCTION ... 3
2.2 LAUNCH FILES ... 3
2.3 DEFINING A LAUNCH CANDIDATES .. 4
2.4 DEFINING LEGACY LAUNCH CANDIDATES .. 4
2.5 DEFINING SIMPLE LAUNCH CANDIDATES .. 5
2.6 DEFINING ADD-ON LAUNCH CANDIDATES .. 6
2.7 ADD-ON CONFIGURATION FILES ... 7
2.8 PASSING VARIABLES TO THE ADD-ON ... 9
2.9 ADD-ON CONSIDERATIONS FOR RECEIVING PARAMETER ... 13
2.10 ADD-ON PROGRAM CONSIDERATIONS ... 13

3 SET UP THE ADD-ON TO CALL OUTPOST .. 15

3.1 INTRODUCTION ... 15
3.2 AOCLIENT PROGRAM SETUP ... 15
3.3 OUTPOST SETUP ... 16
3.4 CREATE THE MESSAGE TEXT FILE ... 16
3.5 BUILD THE AOCLIENT RUN STRING... 16

4 THE ADD-ON PROCESS .. 19

4.1 OUTPOST, PROGRAM START / INITIALIZATION ... 19
4.2 OUTPOST > FORMS, CLICK .. 19
4.3 OUTPOST > OPEN MESSAGE FORM .. 20

Revision History

Date Revision Release Notes
8/2/2017 1.0 V3.2 Original Doc, out for review
1/28/2018 1.1 V3.2 Supports v320c106

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 1

1 About Add-ons
1.1 Introduction

This guide will introduce you to Outpost Add-ons and describe how they work and
what you need to do to develop your own Add-ons.

1.2 What is an Add-on?
Today, Outpost provides several ways for creating messages:
1. Direct enter free-form text messages
2. Copy-and-Paste or input from a text file
3. Ics213mm – A general-purpose ICS 213 message
4. NTS – National Traffic System message
5. MARS Message Maker
6. PacFORMS

The two things that the above have in common is that they:
1. solve a specific messaging problem that requires a specific message format,
2. align with how our served agencies or specific users get their work done.

An Add-on is another method with which you can create a message to be
transmitted and received by Outpost, but with the message creation process
outside of Outpost. Think of an Add-on as an Outpost extension. The first real
add-on was PacFORMS, a series of browser-based set of forms that meet the
emergency digital messaging needs of Santa Clara County OES.
With the PacFORMS functionality hard-coded into Outpost, there was interest in
another way for users to develop and integrate their own messaging solutions into
Outpost without a code change.

1.3 Add-ons and Outpost
Add-ons are another way to improve the message handling efficiency of
communications teams who work closely with served agencies.
There are four things you need to make Add-on messaging work:
1. Your Add-on program. You need a tool, program, or some automated process

to collect and organize your message content and get it ready for transmitting,
as well as handling presenting your message on the receiving end (if required).
It could be a compiled program, script, or something else to produce a
message. How you do it is up to you.

2. Add-on Config (.ini) File. This is a file that you create to tell Outpost how you
want to schedule the Add-on from Outpost.

3. Outpost EMS (External Message Service). Outpost EMS is delivered with each
Outpost installation and includes 2 programs:

a. Aoclient.exe. This program is called by your Add-on and is the first
link in the chain to pass your message to Outpost. This program will
then make a call to…

b. Opdirect.exe. This program listens on the network port for and
receives messages from remote message sources, such as

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 2

Aoclient.exe. Once an Add-on sends it a message, Opdirect processes
and writes the message to the Outpost message database.

4. Outpost. Outpost is the program that interacts with the BBS for sending and
retrieving packet messages. Outpost schedules your Add-on when creating a
new message, sending and receiving all types of messages (Add-on messages
included), and directing the message back to the Add-on to be opened in its
native format.

1.4 Defining an Add-on
There are a few things that you need to do to make the entire Add-on end to end
process work
1. Develop the Add-on program
Writing this program will be the bulk of your Add-on creation effort. The Add-on
program needs to do the following:
• Parse a run string to be received from Outpost. This string will contain one or

more arguments and parameters that can be passed by Outpost with specific
data for the Add-on program. You define the arguments that you need, and
tell Outpost how to build the Add-on run string.

• Read a text file. This file may be referenced by specific command line
parameters that are passed to the Add-on. Your add-on may want to open a
message received by Outpost, populate some form, and display it to the user
in a specific format.

• Write a text file. When sending a message to Outpost, the Add-on must be
able to create a text file that will be passed to Outpost via the Aoclient.exe
program.

• Schedule a program. To pass a message to Outpost for sending, the Add-on
must be able to schedule the Aoclient.exe program and pass it one or more
command line arguments and parameters, minimally with the name of the file
containing the message.

2. Create the Add-on Launch String
The Add-on can be added to the Outpost’s Forms menu by including a reference to
it in the Launch.local file, found in the Outpost data directory. This is usually
referenced by an Include statement that points an <add-on>.launch file located in
the Add-on directory.
3. Create the <add-on>.ini file
The <add-on>.ini file defines how Outpost will interact with the Add-on programs
depending on the state of the message (New, Ready, Sent, Received, etc.).
A more detailed description of the entire add-on process, file formats, and
command line parameters are discussed in the following sections.

1.5 Notes, assumptions, and disclaimers
The Outpost External Message Service error handling will continue to evolve over
time. Most of the errors are properly trapped and reported, however, it is not
100% foolproof.

1.6 Find an Error?
If you find an error or unsure how Outpost’s External Message Service is supposed
to work, post a message to the Outpost Users Group or send me an email at
kn6pe@arrl.net.

mailto:kn6pe@arrl.net

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 3

2 Set up Outpost to call the Add-on

This section describes how Outpost is configured to run an installed Add-on
program.

2.1 Introduction
Outpost has the ability to launch a program to perform a certain task, with most of
the programs related to message handling, either formatting a message or
presenting a message.
A Launch Candidate is a file, program, or some other automated process that can
be programmatically scheduled to perform some type of messaging task.
Currently, launch candidates can be defined in one of three ways:
1. Legacy Launch: This was the original implementation of Outpost. The primary

method for defining these legacy launch candidates was through HTML files.
Currently, only Santa Clara County CA RACES uses this approach with a
solution called PacFORMS. These are browser-based forms and part of an
application suite of forms and programs that manage the collection and
presentation of messages within Santa Clara County.
Because of the complexity of the programming involved and the choice of
browsers that could be used, all of the PacFORMS solution is hard coded in
Outpost, making it very difficult to change for new applications.
NOTE: Users considering adding their own messaging solution SHOULD NOT
use the HTML / Legacy Launch method.

2. Simple Launch: Outpost supports a simple format for adding executable
programs as a launch candidate. These candidates can be any windows
program or batch file that can be programmatically scheduled. The Outpost
Ics213mm.exe program is one such example of a Simple Launch Candidate.

3. Add-on Launch: This approach provides the greatest flexibility for configuring
and adding message Add-ons, and is the preferred method for defining new
messaging solutions.

2.2 Launch Files
Regardless of the type, all Launch Candidates are defined in a launch file that
defines what gets presented in the Outpost > Forms menu, and how each launch
candidate gets scheduled. There are 2 types Launch files that Outpost uses:

Launch.ini This file is delivered with Outpost. Because it will be over-written
with each install process, it should not be changed.
This file contains specific ICS forms that are part of the Outpost
suite such as ICs213mm. It is located in the Outpost Data Directory
and, on running Outpost, is read, processed, and the list of launch
candidates is developed and loaded in the Forms menu.

Launch.local This file is created by the user and has the same format as the
Launch.ini file. Because it is not overwritten during the installation
process, it will persist from one Outpost install to another. When
adding your own launch candidates, you should add them here.
The Launch.local file is also located in the Outpost data directory
and, if found, is read immediately after the Launch.ini file. Its’

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 4

contents are processed in the same manner as the Launch.ini file.

2.3 Defining a Launch Candidates
Launch files are made up of the following controls. Not all controls are allowed for
all types of launch categories.

Controls Description Legacy Simple Add-on

Control Lines One or more lines of text that
guide or enhance the launch setup
process.







HTML records Records that identify information
about an HTML file to be handed
off to a browser for display.



Binary
executable
records

Records that identify information
about an existing program file to
run under Windows.



Addon records Records that identify information
about an existing user–defined
Add-on subsystem.



Control Lines

/ <line of text>

<line of text>
Any line where the first character is a “/” or “#”
character is treated as a comment line.
Comment lines can occur anywhere within a
launch file.

INCLUDE <path/file_name> Declares the name of a file to be included. All
files referenced must be in the same Launch.ini
file format. Only one level of includes is
permitted.

MENU <title> Changes the Outpost menu name, defaults to
Forms. Only one Menu command should be
used. If more than one is listed, the last one
read will be the one to be applied.

Line Causes a line break on the Outpost menu

2.4 Defining Legacy Launch Candidates
HTML records are part of the original implementation in Outpost. It is limited in
what it can support in terms of parameter passing and event scheduling. The
format for the HTML file record is as follows:
HTML -fn <friendly_name> -p <path\file_name> -o <parm_list>

Where:

HTML HTML record tags identify this entry as an html file.

-fn <friendly_name> Required. The Friendly Name is loaded in the
Outpost menu associated with this executable event.
There should be no spaces within this string; use the
“_” character instead; the load process will replace
this with a space in the menu.

-p <path\file_name> Required. The full path and file name for this

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 5

executable.

-o <parm_list> Optional. One or more parameter pairs to be passed
with the file name. These are fixed associations and
must line up to make sense, in the format:
pfvar=+opvar.
Pfvar PacForms Variable. One of 3 variables to
be assigned.
+opvar Outpost Variable. One of 3 variables to
be passed

The list of standard PacForms variables are:

pfvar Description

ocall=+CALL A valid FCC call sign. Outpost makes the actual call
substitution for “+CALL” at the time this PacFORMS is
scheduled.

oname=+NAME The name associated with the FCC call sign. Outpost makes
the actual name substitution for “+NAME” at the time this
PacFORMS is scheduled.

Msgno=+MSGNO The message number. Outpost makes the actual Message
Number substitution for “+MSGNO” at the time this
PacFORMS is scheduled.

2.5 Defining Simple Launch Candidates
BIN records identify a windows program that can be set up for running by Outpost.
The format for the BIN file record are as follows:
BIN -fn <friendly_name> -p <spath\file_name> -o <parm_list>

Where:

BIN BIN record tags identify this entry as a Windows
binaryexecutable file.

-fn <friendly_name> Required. The Friendly Name is loaded in the
Outpost menu associated with this executable event.
There should be no spaces within this string; use the
“_” character instead; the load process will replace
this with a space in the menu.

-p <path\file_name> Required. The full path and file name for this
executable.

-w Optional: specifies that Outpost should wait for the
program to complete before returning control back
to Outpost.

-o <parm_list> Optional: parameters to be passed to to the file
name. These parameters are program dependent.
See that programs reference manual for the
command line structure.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 6

2.6 Defining Add-on Launch Candidates
Add-on Records are very different from HTML and BIN records in that they do not
specify data to be passed, but point to the configuration file that will define all run
string options.
The format for the Add-on record is as follows:
ADDON -fn <friendly_name> -a <addon_name> -t <addon_type>

Where:

ADDON non-case specific, the record tag identifying this record
as an Addon (internally stored as UPPER CASE).

-fn <friendly_name> Required. The Friendly Name is loaded in the Outpost
menu associated with this executable event.
There should be no spaces within this string; use the
“_” character instead; the load process will replace this
with a space in the menu.

-a <addon_name> Required: Declares the Addon name; non-case specific.
The addon_name is case-insensitive and is the specific
name of the add-on. This is the same name used for
the add-on configuration directory.

-t <message_type> Required: Declares the message type, used by the Add-
on program.
The message_type is case-insensitive and defines the
type of message that should be launched by the add-
on. This is Add-on-specific and defined by the add-on
developer.

Sample Launch.ini file
/ ***
/ File: Launch.ini
/ Desc: Sample executable event launch file
/ Format: Each line consists of 2 to 4 fields prefixed by a tag
/ 1st field: Record Type: HTML, BIN, LINE, or MENU
/ 2nd field: -fn <friendly name>
/ 2nd field: -h <menu name>
/ 3nd field: -p <Full path to the executable file>
/ 4th field: -o <optional parameters separated by spaces>
/ Use "/" for comments or for inserting blank lines.
/ Revision: 03/29/11: Original
/ ***
/
/Type Friendly Name Path to the file Parameter list
/---- -------------- ----------------- -------------------
BIN -fn Generic ICS-213 Message Form -p APP_PATH\Ics213mm.exe/
LINE

Sample Launch.local file
/ ***
/ File: Launch.local
/ Desc: Specific launch entries; not overwritten by a new install
/ This file is loaded immediately after Launch.ini.
/ Revision: 09/15/16: Original
/ ***
/
/Type Friendly Name Path to the file Parameter list
/---- -------------- ----------------- -------------------
HTML -fn Messge_Form -p C:\PacFORMS\Message.html -o msgno=+MSGNO
BIN -fn Notepad -p c:\windows\notepad.exe -o c:\Mydata\datafile.txt
/

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 7

LINE
/ include any other local addon definitions here
INCLUDE c:\Outpost_addon\aotest\aotest.launch
INCLUDE c:\Outpost_addon\alt911\alt911.launch

Sample addon.launch file:

File: alt911.launch
Desc: Addon launch definition; forms used by the cupcert team
Revision: 09/15/16: Original

#Type Friendly Name addon name addon type
#---- ------------ ---------- ---------------------
ADDON -fn Alt911_Cactis -a alt911 -t Cactis
ADDON -fn Alt911_Report -a alt911 -t Report

2.7 Add-on Configuration Files
Each add-on also has a configuration file that describe how Outpost will interact
with the add-on, named <addon_name>.ini. The file consists of a series of
parameter names and a value, in the form:
 <parameter>=<value>
There are 13 parameters that need to be setup:

Parameter Name Description
bang-id String, Not case-sensitive

Identifies the name used by the Add-On in the message body to
identify what type of message it is. It MUST be the same as the
add-on name. The name also must be surrounded by exclamation
points (!).
Example: bang-id=!ALT911!

launch-created When opening a message in Outpost, defines what Outpost
should do with a locally created message (received from the Add-
on) that matches the bang-id and has not been sent.
Assigned values: {always|ask|never}
Example: launch-created=ask

launch-sent When opening a message in Outpost, defines what Outpost
should do with a locally created message that matches the bang-
id and was previously sent.
Assigned values: {always|ask|never}
Example: launch-sent=never

launch-received When opening a message in Outpost, defines what Outpost
should do with a received message (from the BBS) that matches
that matches the bang-id.
Assigned values: {always|ask|never}
Example: launch-sent=always

msg-dir Defines the directory where Outpost should write the message
file for this Add-On to pick up.
Example: msg-dir=C:\Alt911\messages

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 8

Parameter Name Description
cfg-dir Defines the directory where Outpost can find this add-on’s

configuration files.
Example: cfg-dir=C:\Alt911

cmd-new Defines what happens when calling the add-on with a message
that has a message state of “New”.
This parameter is used when first selecting a form from the
Outpost > Forms menu. This essentially starts the process to
create a new message by the add-on.
The value may contain literals and environmental variable
substitutions. For long lines, the value string can continue on the
following lines provided additional lines start with a space.
Example: cmd-new=C:\Alt911\Cactis.exe
 –mt {{ADDON_MSG_TYPE}}
 –lc {{SETUP_ID_LEGAL_CALL}}
 –ln “{{SETUP_ID_LEGAL_NAME}}”
 –mn {{MSG_NUMBER}}

cmd-submitted Defines what happens when calling the add-on with a message
that has a message state of “Submitted”.
This parameter gets invoked whenever the user clicks on a
message just received from the Add-on. It has not yet been
transmitted by Outpost.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-submitted=C:\Alt911\Alt911.exe

cmd-draft Defines what happens when calling the add-on with a message
that has a message state of “DRAFT”.
A message is in the DRAFT State when a new message is opened
for editing, and the user previously pressed “Save” (not “Send”)
on the message form.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-draft=C:\Alt911\Alt911.exe

cmd-ready Defines what happens when calling the add-on with a message
that has a message state of “READY”.
A message is in the READY State when a new message is opened
for editing, and the user previously pressed “Send” on the
message form.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-ready=C:\Alt911\Alt911.exe

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 9

Parameter Name Description
cmd-sent Defines what happens when calling the add-on with a message

that has a message state of “SENT”.
A message is in the SENT State when a message was transmitted
by Outpost to the BBS.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-sent=C:\Alt911\Alt911.exe

cmd-unread Defines what happens when calling the add-on with a message
that has a message state of “UNREAD”.
A message is in the UNREAD State when a message is retrieved
from the BBS, saved in the Outpost In Tray, but before it was
opened for reading.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-unread=C:\Alt911\Alt911.exe

cmd-read Defines what happens when calling the add-on with a message
that has a message state of “READ”.
A message is in the READ State when a message is retrieved from
the BBS, and was previously opened for reading.
May contain literals and environmental variables for
substitutions. Multiple parameters may be included; see the
cmd-new example.
Example: cmd-read=C:\Alt911\Alt911.exe

2.8 Passing variables to the Add-on
When launching or sending a message to an add-on, certain information that
Outpost knows but is not contained in the message can be sent to the add-on
along with the message. This occurs when defining the run strings used with the
cmd-<state> lines as described above.
For instance: the simplest command line is one where Outpost calls the program
without any command line arguments, such as:
cmd-draft=C:\Alt911\Alt911.exe
In this case, when opening a message in the Draft state, Outpost will look up the
cmd-draft parameter and schedule the named add-on using its listed run
command. This may be fine but probably not real useful without passing program
command line arguments. The format for passing arguments is:

cmd-draft=<path\prgm_name> -arg1 <value1> ... –argn <valuen>

Where
<path/prgm_name> name of the program to execute
-argn add-on program-defined command line argument
<valuen> Outpost parameter to pass to the program

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 10

Take a look at this example,
cmd-draft=C:\Alt911\Cactis.exe
 –mt {{ADDON_MSG_TYPE}}
 –lc {{SETUP_ID_LEGAL_CALL}}
 –ln “{{SETUP_ID_LEGAL_NAME}}”
 –sz {{ MSG_BODY_CHAR_COUNT }}
 –por
Here’s what’s happening:
1. On clicking on an Add-on message that was previous saved (as a DRAFT),

Outpost looks up the cmd-draft parameter and plans to run the program
C:\Alt911\Cactis.exe

2. The add-on program developer defined a couple of run-time arguments to be
passed to the Add-on. These arguments are:

• mt – The program needs the message type for this message (see
 description below)

• lc – The Call Sign currently selected in Outpost
• ln – The name of the user
• sz – The message sized as stored in Outpost

3. All arguments are passed with a dash “–”followed immediately by the
argument.

NOTE: Argument names are defined by the developer. They can be anyhing you
want.

4. In this example, all of these run time arguments require a parameter (or
Outpost environmental variable) that Outpost will substitute with the real
Outpost value when building the add-on run command.

a. All parameters for these run time arguments must be bracketed with
the double curly opening {{ and closing }} brackets.

b. The program developer could also define run time arguments without
parameters.

The following are the parameters available for substitution by Outpost. Variable
substitution is dependent on when the Add-on is scheduled. Scheduling occurs by
two methods:
1. Outpost > Forms, Menu Click. When you first click on an Add-on from the

Forms menu, you are essentially initiating the creation of a new message.
Variables used here can only be used with the cmd-new parameter, and
have a check mark () in the Menu-Click column below.

2. Outpost > opening a listed message. If an add-on message is listed in the
message list, opening it by double-clicking it or using the Open button will
cause Outpost to check on the message status, and then check if the message
should be opened with any of the other cmd-<state> parameters. These
parameters have a check mark () in the Msg Open column below.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 11

 Availability
Environmental Variable Value Menu-

Click
Message

Open
The following variables are global in nature, and change only
when they are updated in Outpost.

SETUP_ID_LEGAL_CALL Setup > Identification > Legal >
User Call Sign

 

SETUP_ID_LEGAL_NAME Setup > Identification > Legal >
User Name

 

SETUP_ID_LEGAL_PFX Setup > Identification > Legal >
Message ID Prefix

 

SETUP_ID_TAC_CALL Setup > Identification > Tactical >
Tactical Call Sign

 

SETUP_ID_TAC_NAME Setup > Identification > Tactical >
Additional ID Text

 

SETUP_ID_TAC_PFX Setup > Identification > Tactical >
Message ID Prefix

 

SETUP_ID_ACTIVE_CALL Setup > Identification > Legal/
Tactical Call Sign (whichever is
selected)

 

SETUP_ID_ACTIVE_NAME Setup > Identification > Legal/
Tactical Additional ID Text
(whichever is selected)

 

SETUP_ID_ACTIVE_PFX Setup > Identification > Legal/
Tactical Message ID Prefix
(whichever is selected)

 

SETUP_BBS_CONNECT_NAME Setup > BBS > Connect Name  
SETUP_NEW_MSG_NUMBER Setup > Message Settings > Msg

Tab


The following variables are from the Message itself

MSG_BBS BBS field in the message 
MSG_FROM_HEADER Full address (not comments) in

"From:" field.
Ex: If From: is
user@host.domain, then value is
“user@host.domain”
Ex: If From: is
“Big User” <user@host.domain>,
then value is
“user@host.domain”

 

MSG_FROM_LOCAL Part of From: address before the
"@"
Ex: If From: is
user@host.domain, then value is
“user”

 

MSG_FROM_FQDN Part of From: address after the
“@”
Ex. If From: is
user@host.domain, then value is
“host.domain”

 

mailto:user@host.domain
mailto:user@host.domain
mailto:user@host.domain
mailto:user@host.domain
mailto:user@host.domain

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 12

 Availability
Environmental Variable Value Menu-

Click
Message

Open
MSG_FROM_HOST Part of From: address after the

"@" and before the first "."; null
if From address is local only.
Ex. If From: is
user@host.domain, then value is
“host”

 

MSG_FROM_DOMAIN Part of From: address after the
first “.” After the "@"; null if
from address does not include a
domain
Ex. If From is user@host.domain,
then value is “domain”

 

MSG_TO_HEADER All address(es) in the "To:" field;
will be full addresses if any are in
a user@host.domain format.

 

MSG_SUBJECT Subject: from the message 
MSG_DATETIME_HEADER Date/Time from the "Date:"

from the received message; null
if the message was created
locally

 

MSG_DATETIME_OP_SENT Date/Time the message was sent
by Outpost to the BBS; null if the
message has not been sent (it
was received, or it was created
but not sent).

 

MSG_DATETIME_OP_RCVD Date/Time the message was
received by Outpost from the
BBS; null if the message was not
received (it is locally created)

 

MSG_NUMBER The message number (for
outgoing messages)

 

MSG_LOCAL_ID The local message ID assigned (if
any) (for incoming msgs)

 

MSG_BODY_CHAR_COUNT Character count of message
body

 

MSG_STATE Text of: new, ready, sent,
unread, read, draft, abandoned,
deleted

 

MSG_ORIGIN Text of: created, received 
MSG_FILENAME Name of the message file being

passed (no path info)
 

The following variables are set in the Add-on definition file and
applies to all messages associated with a specific add-on.

ADDON_MSG_TYPE Type of message (set by
Launch.ini, launch.local or
included launch files)



mailto:user@host.domain
mailto:user@host.domain
mailto:user@host.domain

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 13

 Availability
Environmental Variable Value Menu-

Click
Message

Open
ADDON_MSG_DIR Absolute path to the directory

where Outpost will place files to
be read by the Add-On (defined
in Add-On config file <add-on-
name>.ini). Null if message does
not contain a !bang-id!

 

ADDON_CFG_DIR Absolute path to the directory
where the configuration files for
the add-on can be found. These
files include: <add-on-name>.ini
and <add-on-name>.launch.

 

2.9 Add-on Considerations for Receiving Parameter
1. All variables are passed to an Add-on on the command line.
2. Variable substitution is independent of the add-on syntax. In other words,

each add-on may have its own command line syntax to accomplish the same
thing. Those different syntaxes are independent of Outpost and can easily be
configured in the add-on configuration.

3. If a command line variable may contain spaces, such as the legal name or the
filename, then the command line is formatted as:
add-on.exe –lc {{SETUP_ID_LEGAL_CALL}}
 –ln “{{SETUP_ID_LEGAL_NAME}}”
 –fn “{{MSG_FILENAME}}”

Double Quotes should be used to quote any substitutions which might result
in spaces being included. In fact, it is safest to quote everything that is not
certain to be a numerical value (such as the character count).

4. Variable substitution rules are driven based on where the Add-on is called.
a. Menu_Click. Only SETUP_ and ADDON_ environmental variables are

allowed.
1. MSG_ variables are will not be substituted since no

message exists at this point.
2. NOTE: A “SETUP_NEW_MSG_NUMBER” variable exists

that allows a message to be created to be assigned an
Outpost Message Number.

b. Message Open. All SETUP_, MSG_, and ADDON_ environmental
variables are allowed with the following two exceptions (exclusive to
Menu_Click events):

1. SETUP_NEW_MSG_NUMBER
2. ADDON_MSG_TYPE

2.10 Add-on Program considerations

!! What your ADD-ON needs to do:

1. The options you define in the add-on.ini file imply that your Add-on can
consume and needs them. Develop the parsing mechanism to pick up and
store command line options to satisfy your program’s requirements.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 14

2. It is recommended that you store your application in a directory other than
the standard Windows programs directories to avoid any conflicts with
Windows’ User Access Controls. For instance, you may name your directory:
 C:\MyPrograms\Outpost_addons\<MyAddonName>

3. Store your <add-on>.ini file in the directory where your Add-on resides.
4. In the Launch.Local file, add an Include statement to reference to your

<addon_name>.ini.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 15

3 Set up the Add-on to call Outpost
This section describes how the Add-on needs to be designed to pass a created
message back to Outpost.

3.1 Introduction
Building your Add-on is totally up to you in terms of development language and
tools. However, at some point, you will want to pass your message to Outpost for
action.
The Outpost/Add-on approach specifies a simplified interface for your Add-on to
pass a message to Outpost. Once your Add-on is built, there are four things you
need to do:
1. Copy the program Aoclient.exe into your program directory. This program is

installed with Outpost. If you are distributing your Add-on to a wider
audience, the author of Outpost grants permission to include this program
with your installer.

2. Configure Outpost to have Opdirect.exe running.
3. When your message in the Add-on is ready, the Add-on must create a text file

that contains the message body.
4. The Add-on runs Aoclient.exe with a run string that you create to pass all the

necessary parameters (along with the message file name) that will define your
message in Outpost.

3.2 Aoclient program setup
This program is the first step in getting your message loaded into Outpost.
Aoclient.exe has 2 modes of operation.
1. Interactive Mode: When running the program without any command line

options, the program opens in Interactive mode.
2. Command Line Mode: When one or more command line options are passed

to Aoclient.exe, the program opens in Command Line mode. All menus and
controls are disabled and unavailable to the user. On completing the message
hand-off process, the program terminates.

Here is the sequence of events for command line mode:
From your Add-on:
1. Create your message and any message parameters that your program

supports.
2. Create a text file of your message.
3. Build the Aoclient.exe run string,
4. Schedule Aoclient.exe with your command line arguments and parameters.
At Aoclient.exe:
1. Looks for and detects the command line options.
2. Confirms that the –f option (file name) is minimally set.
3. Extracts the run time parameters, opens and reads the message file, and

formats a message with all included command line options.
4. Aoclient.exe makes a network connection call to Opdirect.exe, and hands off

the message.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 16

5. When Aoclient is done, it creates a PASS / FAIL semaphore file for the Add-on
to read to determine if the submittal was a success. The Add-on then exits.

6. Meanwhile, Opdirect writes the message into the Outpost database.
Setup
You will need to do the following only once to set up Aoclient.exe:
1. Copy the Aoclient.exe program from the Outpost Programs Directory into your

Add-on program directory.
2. Once Aoclient.exe is in your Add-on’s directory, double-click on it to run it.
3. Select File > Preferences, then the Add-on ID tab. Enter the name of the Add-

on.
4. Select File > Preferences, then the Network tab. If your Add-on is running on

a different PC than Outpost, but on the same LAN, enter the IP address of the
Outpost PC where Opdirect.exe is running. If it is running on the same PC as
Outpost, do not change any of the defaults.

5. Press OK when Done. Aoclient is now set up.

3.3 Outpost Setup
The Opdirect.exe program listens for network connections from programs like
PacFORMS, Ics213mm.exe, and Aoclient.exe who want to pass their messages to
Outpost. Opdirect.exe must be running for your Add-on process to function
correctly.
Setup
1. From Outpost, select Tools > Message Settings, Adv tab.
2. Check the box “Automatically start the Opdirect External Message Service”
3. Press OK, and restart Outpost. You will see Opdirect.exe running in the

System Tray.

3.4 Create the message text file
The add-on’s message is passed to Aoclient.exe as a standard ASCII text file. How
you create the file is up to you and the capabilities of your development
environment.

!! What your ADD-ON needs to do:

1. Create the message in your add-on in whatever manner you have defined.
2. When ready to send your message, format your message in standard 7- or 8-

bit ASCII. These files are typically marked as <some_name>.txt, but you can
name it whatever you want. All lines should be terminated with either a CR or
CRLF.

3.5 Build the Aoclient run string
All other message parameters are passed as Aoclient.exe command line
parameters. One of the parameters is the file name containing the message text.

!! What your ADD-ON needs to do: Command Line Options

All parameters are passed to Aoclient.exe as command-line options. These options
are:

Cmd Line Option Description

-a <addon_name> REQUIRED. Name of this Add-on.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 17

Cmd Line Option Description
Example: -a ARKSTAT

-f <file_name> REQUIRED. Name of the file containing the message created
by the Add-on to be passed to Outpost.
Example: -f c:\Outpost_addon\Arkstat\ArkstatMsg.txt

-b
<bbs_connect_name>

OPTIONAL. Name of the BBS to be set for this message.
Default: currently selected BBS
Example: -b W6XSC-1

-t <destination_list> OPTIONAL. List of one or more destination addresses to be
set for this message. If this option is not set, then Outpost
will leave this field on the message blank, or use the Default
Destination (if set).
Default: <none set>
Example: -t “KN6PE, kd6tcmv@arrl.net”

-s <subject> OPTIONAL. Subject to be set for this message. If Message ID
is set, Outpost will automatically insert the Message ID ahead
of the subject.
If this option is not set, then the field will be blank.
To ensure a new message ID is created (if this is an original
message creation event), then precede the Subject with “++”
(no quotes); this will force Outpost to load the next message
ID onto the subject line.
Default: <none set>
Example: -s “++DeAnza ARK Status, OP Period #2”

-u URGENT. OPTIONAL.
Sets the message status to URGENT. If this option is not set,
then Outpost will leave the message as not Urgent. There is
no parameter that follows this option.
Default: Not Urgent if not added to the command line
Example: -u

-y Message Type. OPTIONAL.
Sets the message Type. The string is one of these three
values: [PVT | NTS | BUL].
Default: PRIVATE (PVT)
Example: -y NTS

-p NOPOP. OPTIONAL.
Determines if message will be opened automatically once it
arrives in Outpost. If set, Outpost will not open the message.
Default: Not set. Outpost will automatically open the
message
Example: -p (Outpost will not open the message)

-dlt DoLinkTest. OPTIONAL
Causes Aoclient to initiate a test connection with Opdirect.
As a result of this test, either an OpdPASS or OpdFAIL file will
be created in the directory where Aoclient resides.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 18

!! What your ADD-ON needs to do: Run a program

1. Build the Aoclient.exe command line. For example, the following code
example will set up and schedule Aoclient.exe, for instance:
VB
 Program = "Aoclient.exe"
 RunLine = “ –f RunCmd.Text”
 Result = Shell(Program & " " & RunLine)

C++
nRet= ShellExecute(0,"open",Prgm,Runline,0,SW_SHOWNORMAL)

2. Check if the call to Aoclient.exe was successful. The best way to do this is by

(i) checking that Aoclient completed, and then (ii) test for the presence of the
Aoclient files “OpdPASS” or “OpdFAIL”, where:
 OpdPASS – The message was successfully passed to Opdirect.
 OpdFAIL – The message was not passed to Opdirect.

A fail indication may be caused by:
1. Aoclient not pointing to the correct IP address for Opdirect
2. Opdirect is not running.

NOTE: The above are samples for demonstration purposes only. Refer to your
programming language documentation for the exact method for scheduling a
program.

3. Watch for Aoclient.exe error messages in the event that program has a
problem passing your message to Outpost.

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 19

4 The Add-on Process

The following describes the Add-on end to end process.

4.1 Outpost, Program Start / Initialization
The following occurs each time Outpost is run. If changes to any of the Launch or
Add-on files are made, exit out of Outpost, and then run Outpost again to pick up
all changes.
Create Launch Menu (the Outpost Forms Menu)
 Initialize Launch Data
 Read the Launch.ini

If found, read the Launch.local
 If found, process all INCLUDE statements; add their content as well
 Load the Launch Data Array (7 fields per launch candidate)
 Initialize Add-on Data
 Find all Add-ons in the Launch Data Array
 If found, read the <addon_name>.ini file

Load contents into the Add-on Data Array (13 fields per Add-on)
 Populate the Outpost > Forms Menu from the Launch Array
End.

4.2 Outpost > Forms, Click
Selecting an entry from the Forms Menu will create a NEW message (implies there
is no message body). The Add-on run string is based on the Menu item being an
HTML, BIN, or ADD-ON message to be created.
If HTML,
 Retrieve the correct Launch Array entry
 Build the run string (html path and option string)

Set up the Msg ID
 Make the run string substitutions
 Find the Default Browser
 Run the browser with the run string
If BIN,
 Retrieve the correct Launch Array entry
 Build the run string (program path and option string)
 Run the program with the run string
If ADD-ON,
 Retrieve the correct Launch Array entry
 Retrieve the correct Add-on Data Array entry
 Get the Open Action (based on the loaded <addon.ini> Config File)
 If Open Action is “ALWAYS” or “ASK” (with a YES answer),
 Build the Run String (based on Message State)
 Make the run string substitutions
 Run the Add-on with run string

Add-on Implementation Guide 1.1 Users Guide

2/22/2018 DRAFT 20

4.3 Outpost > Open Message Form
The message form will open either because it was “auto-popped” open by an
incoming Add-on message (via Aoclient and Opdirect), or the Packet Operator
manually opened the message from the Outpost message list.
If a PacFORM,
 Process PacFORM Message
 If Open Action is “ALWAYS” or “ASK” (with a YES answer),
 Create the message file (embed parameters in the file)
 Build the run string (program, message file name)
 Run the browser with the run string

If ADD-ON,
 Get !AddonBangID!. Look up the Addon in the Launch and Add-on Data Arrays.
 Get the Open Action (based on the loaded <addon.ini> Config File).
 If Open Action is “ALWAYS” or “ASK” (with a YES answer),
 Get Run String (based on Message State)
 Make run string substitutions
 Create the message file
 Schedule the Add-on

	1 About Add-ons
	1.1 Introduction

	This guide will introduce you to Outpost Add-ons and describe how they work and what you need to do to develop your own Add-ons.
	1.2 What is an Add-on?

	Today, Outpost provides several ways for creating messages:
	1. Direct enter free-form text messages
	2. Copy-and-Paste or input from a text file
	3. Ics213mm – A general-purpose ICS 213 message
	4. NTS – National Traffic System message
	5. MARS Message Maker
	6. PacFORMS
	The two things that the above have in common is that they:
	1. solve a specific messaging problem that requires a specific message format,
	2. align with how our served agencies or specific users get their work done.
	An Add-on is another method with which you can create a message to be transmitted and received by Outpost, but with the message creation process outside of Outpost. Think of an Add-on as an Outpost extension. The first real add-on was PacFORMS, a series of browser-based set of forms that meet the emergency digital messaging needs of Santa Clara County OES.
	With the PacFORMS functionality hard-coded into Outpost, there was interest in another way for users to develop and integrate their own messaging solutions into Outpost without a code change.
	1.3 Add-ons and Outpost

	Add-ons are another way to improve the message handling efficiency of communications teams who work closely with served agencies.
	There are four things you need to make Add-on messaging work:
	1. Your Add-on program. You need a tool, program, or some automated process to collect and organize your message content and get it ready for transmitting, as well as handling presenting your message on the receiving end (if required). It could be a compiled program, script, or something else to produce a message. How you do it is up to you.
	2. Add-on Config (.ini) File. This is a file that you create to tell Outpost how you want to schedule the Add-on from Outpost.
	3. Outpost EMS (External Message Service). Outpost EMS is delivered with each Outpost installation and includes 2 programs:
	a. Aoclient.exe. This program is called by your Add-on and is the first link in the chain to pass your message to Outpost. This program will then make a call to…
	b. Opdirect.exe. This program listens on the network port for and receives messages from remote message sources, such as Aoclient.exe. Once an Add-on sends it a message, Opdirect processes and writes the message to the Outpost message database.
	4. Outpost. Outpost is the program that interacts with the BBS for sending and retrieving packet messages. Outpost schedules your Add-on when creating a new message, sending and receiving all types of messages (Add-on messages included), and directing the message back to the Add-on to be opened in its native format.
	1.4 Defining an Add-on

	There are a few things that you need to do to make the entire Add-on end to end process work
	1. Develop the Add-on program
	Writing this program will be the bulk of your Add-on creation effort. The Add-on program needs to do the following:
	• Parse a run string to be received from Outpost. This string will contain one or more arguments and parameters that can be passed by Outpost with specific data for the Add-on program. You define the arguments that you need, and tell Outpost how to build the Add-on run string.
	• Read a text file. This file may be referenced by specific command line parameters that are passed to the Add-on. Your add-on may want to open a message received by Outpost, populate some form, and display it to the user in a specific format.
	• Write a text file. When sending a message to Outpost, the Add-on must be able to create a text file that will be passed to Outpost via the Aoclient.exe program.
	• Schedule a program. To pass a message to Outpost for sending, the Add-on must be able to schedule the Aoclient.exe program and pass it one or more command line arguments and parameters, minimally with the name of the file containing the message.
	2. Create the Add-on Launch String
	The Add-on can be added to the Outpost’s Forms menu by including a reference to it in the Launch.local file, found in the Outpost data directory. This is usually referenced by an Include statement that points an <add-on>.launch file located in the Add-on directory.
	3. Create the <add-on>.ini file
	The <add-on>.ini file defines how Outpost will interact with the Add-on programs depending on the state of the message (New, Ready, Sent, Received, etc.).
	A more detailed description of the entire add-on process, file formats, and command line parameters are discussed in the following sections.
	1.5 Notes, assumptions, and disclaimers

	The Outpost External Message Service error handling will continue to evolve over time. Most of the errors are properly trapped and reported, however, it is not 100% foolproof.
	1.6 Find an Error?

	If you find an error or unsure how Outpost’s External Message Service is supposed to work, post a message to the Outpost Users Group or send me an email at kn6pe@arrl.net.
	2 Set up Outpost to call the Add-on
	This section describes how Outpost is configured to run an installed Add-on program.
	2.1 Introduction

	Outpost has the ability to launch a program to perform a certain task, with most of the programs related to message handling, either formatting a message or presenting a message.
	A Launch Candidate is a file, program, or some other automated process that can be programmatically scheduled to perform some type of messaging task. Currently, launch candidates can be defined in one of three ways:
	1. Legacy Launch: This was the original implementation of Outpost. The primary method for defining these legacy launch candidates was through HTML files.
	Currently, only Santa Clara County CA RACES uses this approach with a solution called PacFORMS. These are browser-based forms and part of an application suite of forms and programs that manage the collection and presentation of messages within Santa Clara County.
	Because of the complexity of the programming involved and the choice of browsers that could be used, all of the PacFORMS solution is hard coded in Outpost, making it very difficult to change for new applications.
	NOTE: Users considering adding their own messaging solution SHOULD NOT use the HTML / Legacy Launch method.
	2. Simple Launch: Outpost supports a simple format for adding executable programs as a launch candidate. These candidates can be any windows program or batch file that can be programmatically scheduled. The Outpost Ics213mm.exe program is one such example of a Simple Launch Candidate.
	3. Add-on Launch: This approach provides the greatest flexibility for configuring and adding message Add-ons, and is the preferred method for defining new messaging solutions.
	2.2 Launch Files

	Regardless of the type, all Launch Candidates are defined in a launch file that defines what gets presented in the Outpost > Forms menu, and how each launch candidate gets scheduled. There are 2 types Launch files that Outpost uses:
	Launch.ini
	This file is delivered with Outpost. Because it will be over-written with each install process, it should not be changed.
	This file contains specific ICS forms that are part of the Outpost suite such as ICs213mm. It is located in the Outpost Data Directory and, on running Outpost, is read, processed, and the list of launch candidates is developed and loaded in the Forms menu.
	Launch.local
	This file is created by the user and has the same format as the Launch.ini file. Because it is not overwritten during the installation process, it will persist from one Outpost install to another. When adding your own launch candidates, you should add them here.
	The Launch.local file is also located in the Outpost data directory and, if found, is read immediately after the Launch.ini file. Its’ contents are processed in the same manner as the Launch.ini file.
	2.3 Defining a Launch Candidates

	Launch files are made up of the following controls. Not all controls are allowed for all types of launch categories.
	Controls
	Description
	Legacy
	Simple
	Add-on
	Control Lines
	One or more lines of text that guide or enhance the launch setup process.
	(
	(
	(
	HTML records
	Records that identify information about an HTML file to be handed off to a browser for display.
	(
	Binary executable records
	Records that identify information about an existing program file to run under Windows.
	(
	Addon records
	Records that identify information about an existing user–defined Add-on subsystem.
	(
	Control Lines
	/ <line of text>
	# <line of text>
	Any line where the first character is a “/” or “#” character is treated as a comment line. Comment lines can occur anywhere within a launch file.
	INCLUDE <path/file_name>
	Declares the name of a file to be included. All files referenced must be in the same Launch.ini file format. Only one level of includes is permitted.
	MENU <title>
	Changes the Outpost menu name, defaults to Forms. Only one Menu command should be used. If more than one is listed, the last one read will be the one to be applied.
	Line
	Causes a line break on the Outpost menu
	2.4 Defining Legacy Launch Candidates

	HTML records are part of the original implementation in Outpost. It is limited in what it can support in terms of parameter passing and event scheduling. The format for the HTML file record is as follows:
	HTML -fn <friendly_name> -p <path\file_name> -o <parm_list>
	Where:
	HTML
	HTML record tags identify this entry as an html file.
	-fn <friendly_name>
	Required. The Friendly Name is loaded in the Outpost menu associated with this executable event.
	There should be no spaces within this string; use the “_” character instead; the load process will replace this with a space in the menu.
	-p <path\file_name>
	Required. The full path and file name for this executable.
	-o <parm_list>
	Optional. One or more parameter pairs to be passed with the file name. These are fixed associations and must line up to make sense, in the format:
	pfvar=+opvar.
	Pfvar PacForms Variable. One of 3 variables to be assigned.
	+opvar Outpost Variable. One of 3 variables to be passed
	The list of standard PacForms variables are:
	pfvar
	Description
	ocall=+CALL
	A valid FCC call sign. Outpost makes the actual call substitution for “+CALL” at the time this PacFORMS is scheduled.
	oname=+NAME
	The name associated with the FCC call sign. Outpost makes the actual name substitution for “+NAME” at the time this PacFORMS is scheduled.
	Msgno=+MSGNO
	The message number. Outpost makes the actual Message Number substitution for “+MSGNO” at the time this PacFORMS is scheduled.
	2.5 Defining Simple Launch Candidates

	BIN records identify a windows program that can be set up for running by Outpost. The format for the BIN file record are as follows:
	BIN -fn <friendly_name> -p <spath\file_name> -o <parm_list>
	Where:
	BIN
	BIN record tags identify this entry as a Windows binaryexecutable file.
	-fn <friendly_name>
	Required. The Friendly Name is loaded in the Outpost menu associated with this executable event.
	There should be no spaces within this string; use the “_” character instead; the load process will replace this with a space in the menu.
	-p <path\file_name>
	Required. The full path and file name for this executable.
	-w
	Optional: specifies that Outpost should wait for the program to complete before returning control back to Outpost.
	-o <parm_list>
	Optional: parameters to be passed to to the file name. These parameters are program dependent. See that programs reference manual for the command line structure.
	2.6 Defining Add-on Launch Candidates

	Add-on Records are very different from HTML and BIN records in that they do not specify data to be passed, but point to the configuration file that will define all run string options.
	The format for the Add-on record is as follows:
	ADDON -fn <friendly_name> -a <addon_name> -t <addon_type>
	Where:
	ADDON
	non-case specific, the record tag identifying this record as an Addon (internally stored as UPPER CASE).
	-fn <friendly_name>
	Required. The Friendly Name is loaded in the Outpost menu associated with this executable event.
	There should be no spaces within this string; use the “_” character instead; the load process will replace this with a space in the menu.
	-a <addon_name>
	Required: Declares the Addon name; non-case specific.
	The addon_name is case-insensitive and is the specific name of the add-on. This is the same name used for the add-on configuration directory.
	-t <message_type>
	Required: Declares the message type, used by the Add-on program.
	The message_type is case-insensitive and defines the type of message that should be launched by the add-on. This is Add-on-specific and defined by the add-on developer.
	Sample Launch.ini file

	/ ***
	/ File: Launch.ini
	/ Desc: Sample executable event launch file
	/ Format: Each line consists of 2 to 4 fields prefixed by a tag
	/ 1st field: Record Type: HTML, BIN, LINE, or MENU
	/ 2nd field: -fn <friendly name>
	/ 2nd field: -h <menu name>
	/ 3nd field: -p <Full path to the executable file>
	/ 4th field: -o <optional parameters separated by spaces>
	/ Use "/" for comments or for inserting blank lines.
	/ Revision: 03/29/11: Original
	/ ***
	/
	/Type Friendly Name Path to the file Parameter list
	/---- -------------- ----------------- -------------------
	BIN -fn Generic ICS-213 Message Form -p APP_PATH\Ics213mm.exe/
	LINE
	Sample Launch.local file

	/ ***
	/ File: Launch.local
	/ Desc: Specific launch entries; not overwritten by a new install
	/ This file is loaded immediately after Launch.ini.
	/ Revision: 09/15/16: Original
	/ ***
	/
	/Type Friendly Name Path to the file Parameter list
	/---- -------------- ----------------- -------------------
	HTML -fn Messge_Form -p C:\PacFORMS\Message.html -o msgno=+MSGNO
	BIN -fn Notepad -p c:\windows\notepad.exe -o c:\Mydata\datafile.txt
	/
	LINE
	/ include any other local addon definitions here
	INCLUDE c:\Outpost_addon\aotest\aotest.launch
	INCLUDE c:\Outpost_addon\alt911\alt911.launch
	Sample addon.launch file:

	# ***
	# File: alt911.launch
	# Desc: Addon launch definition; forms used by the cupcert team
	# Revision: 09/15/16: Original
	# ***
	#
	#Type Friendly Name addon name addon type
	#---- ------------ ---------- ---------------------
	ADDON -fn Alt911_Cactis -a alt911 -t Cactis
	ADDON -fn Alt911_Report -a alt911 -t Report
	2.7 Add-on Configuration Files

	Each add-on also has a configuration file that describe how Outpost will interact with the add-on, named <addon_name>.ini. The file consists of a series of parameter names and a value, in the form:
	<parameter>=<value>
	There are 13 parameters that need to be setup:
	2.8 Passing variables to the Add-on

	When launching or sending a message to an add-on, certain information that Outpost knows but is not contained in the message can be sent to the add-on along with the message. This occurs when defining the run strings used with the cmd-<state> lines as described above.
	For instance: the simplest command line is one where Outpost calls the program without any command line arguments, such as:
	cmd-draft=C:\Alt911\Alt911.exe
	In this case, when opening a message in the Draft state, Outpost will look up the cmd-draft parameter and schedule the named add-on using its listed run command. This may be fine but probably not real useful without passing program command line arguments. The format for passing arguments is:
	cmd-draft=<path\prgm_name> -arg1 <value1> ... –argn <valuen>
	Where<path/prgm_name> name of the program to execute-argn add-on program-defined command line argument<valuen> Outpost parameter to pass to the program
	Take a look at this example,
	cmd-draft=C:\Alt911\Cactis.exe –mt {{ADDON_MSG_TYPE}} –lc {{SETUP_ID_LEGAL_CALL}} –ln “{{SETUP_ID_LEGAL_NAME}}” –sz {{ MSG_BODY_CHAR_COUNT }} –por
	Here’s what’s happening:
	1. On clicking on an Add-on message that was previous saved (as a DRAFT), Outpost looks up the cmd-draft parameter and plans to run the program C:\Alt911\Cactis.exe
	2. The add-on program developer defined a couple of run-time arguments to be passed to the Add-on. These arguments are:
	 mt – The program needs the message type for this message (see description below)
	 lc – The Call Sign currently selected in Outpost
	 ln – The name of the user
	 sz – The message sized as stored in Outpost
	3. All arguments are passed with a dash “–”followed immediately by the argument.
	NOTE: Argument names are defined by the developer. They can be anyhing you want.
	4. In this example, all of these run time arguments require a parameter (or Outpost environmental variable) that Outpost will substitute with the real Outpost value when building the add-on run command.
	a. All parameters for these run time arguments must be bracketed with the double curly opening {{ and closing }} brackets.
	b. The program developer could also define run time arguments without parameters.
	The following are the parameters available for substitution by Outpost. Variable substitution is dependent on when the Add-on is scheduled. Scheduling occurs by two methods:
	1. Outpost > Forms, Menu Click. When you first click on an Add-on from the Forms menu, you are essentially initiating the creation of a new message. Variables used here can only be used with the cmd-new parameter, and have a check mark (() in the Menu-Click column below.
	2. Outpost > opening a listed message. If an add-on message is listed in the message list, opening it by double-clicking it or using the Open button will cause Outpost to check on the message status, and then check if the message should be opened with any of the other cmd-<state> parameters. These parameters have a check mark (() in the Msg Open column below.
	2.9 Add-on Considerations for Receiving Parameter

	1. All variables are passed to an Add-on on the command line.
	2. Variable substitution is independent of the add-on syntax. In other words, each add-on may have its own command line syntax to accomplish the same thing. Those different syntaxes are independent of Outpost and can easily be configured in the add-on configuration.
	3. If a command line variable may contain spaces, such as the legal name or the filename, then the command line is formatted as:add-on.exe –lc {{SETUP_ID_LEGAL_CALL}} –ln “{{SETUP_ID_LEGAL_NAME}}” –fn “{{MSG_FILENAME}}”Double Quotes should be used to quote any substitutions which might result in spaces being included. In fact, it is safest to quote everything that is not certain to be a numerical value (such as the character count).
	4. Variable substitution rules are driven based on where the Add-on is called.
	a. Menu_Click. Only SETUP_ and ADDON_ environmental variables are allowed.
	1. MSG_ variables are will not be substituted since no message exists at this point.
	2. NOTE: A “SETUP_NEW_MSG_NUMBER” variable exists that allows a message to be created to be assigned an Outpost Message Number.
	b. Message Open. All SETUP_, MSG_, and ADDON_ environmental variables are allowed with the following two exceptions (exclusive to Menu_Click events):
	1. SETUP_NEW_MSG_NUMBER
	2. ADDON_MSG_TYPE
	2.10 Add-on Program considerations

	!! What your ADD-ON needs to do:
	1. The options you define in the add-on.ini file imply that your Add-on can consume and needs them. Develop the parsing mechanism to pick up and store command line options to satisfy your program’s requirements.
	2. It is recommended that you store your application in a directory other than the standard Windows programs directories to avoid any conflicts with Windows’ User Access Controls. For instance, you may name your directory: C:\MyPrograms\Outpost_addons\<MyAddonName>
	3. Store your <add-on>.ini file in the directory where your Add-on resides.
	4. In the Launch.Local file, add an Include statement to reference to your <addon_name>.ini.
	3 Set up the Add-on to call Outpost
	This section describes how the Add-on needs to be designed to pass a created message back to Outpost.
	3.1 Introduction

	Building your Add-on is totally up to you in terms of development language and tools. However, at some point, you will want to pass your message to Outpost for action.
	The Outpost/Add-on approach specifies a simplified interface for your Add-on to pass a message to Outpost. Once your Add-on is built, there are four things you need to do:
	1. Copy the program Aoclient.exe into your program directory. This program is installed with Outpost. If you are distributing your Add-on to a wider audience, the author of Outpost grants permission to include this program with your installer.
	2. Configure Outpost to have Opdirect.exe running.
	3. When your message in the Add-on is ready, the Add-on must create a text file that contains the message body.
	4. The Add-on runs Aoclient.exe with a run string that you create to pass all the necessary parameters (along with the message file name) that will define your message in Outpost.
	3.2 Aoclient program setup

	This program is the first step in getting your message loaded into Outpost. Aoclient.exe has 2 modes of operation.
	1. Interactive Mode: When running the program without any command line options, the program opens in Interactive mode.
	2. Command Line Mode: When one or more command line options are passed to Aoclient.exe, the program opens in Command Line mode. All menus and controls are disabled and unavailable to the user. On completing the message hand-off process, the program terminates.
	Here is the sequence of events for command line mode:
	From your Add-on:
	1. Create your message and any message parameters that your program supports.
	2. Create a text file of your message.
	3. Build the Aoclient.exe run string,
	4. Schedule Aoclient.exe with your command line arguments and parameters.
	At Aoclient.exe:
	1. Looks for and detects the command line options.
	2. Confirms that the –f option (file name) is minimally set.
	3. Extracts the run time parameters, opens and reads the message file, and formats a message with all included command line options.
	4. Aoclient.exe makes a network connection call to Opdirect.exe, and hands off the message.
	5. When Aoclient is done, it creates a PASS / FAIL semaphore file for the Add-on to read to determine if the submittal was a success. The Add-on then exits.
	6. Meanwhile, Opdirect writes the message into the Outpost database.
	Setup
	You will need to do the following only once to set up Aoclient.exe:
	1. Copy the Aoclient.exe program from the Outpost Programs Directory into your Add-on program directory.
	2. Once Aoclient.exe is in your Add-on’s directory, double-click on it to run it.
	3. Select File > Preferences, then the Add-on ID tab. Enter the name of the Add-on.
	4. Select File > Preferences, then the Network tab. If your Add-on is running on a different PC than Outpost, but on the same LAN, enter the IP address of the Outpost PC where Opdirect.exe is running. If it is running on the same PC as Outpost, do not change any of the defaults.
	5. Press OK when Done. Aoclient is now set up.
	3.3 Outpost Setup

	The Opdirect.exe program listens for network connections from programs like PacFORMS, Ics213mm.exe, and Aoclient.exe who want to pass their messages to Outpost. Opdirect.exe must be running for your Add-on process to function correctly.
	Setup
	1. From Outpost, select Tools > Message Settings, Adv tab.
	2. Check the box “Automatically start the Opdirect External Message Service”
	3. Press OK, and restart Outpost. You will see Opdirect.exe running in the System Tray.
	3.4 Create the message text file

	The add-on’s message is passed to Aoclient.exe as a standard ASCII text file. How you create the file is up to you and the capabilities of your development environment.
	!! What your ADD-ON needs to do:
	1. Create the message in your add-on in whatever manner you have defined.
	2. When ready to send your message, format your message in standard 7- or 8-bit ASCII. These files are typically marked as <some_name>.txt, but you can name it whatever you want. All lines should be terminated with either a CR or CRLF.
	3. Add the tag !<addon_name>! as the first line in the message file. <addon_name> needs to be the same name that you assigned to your Add-on and listed in your Launch file.
	4. Add the tag !/ADDON! as the last line in your message file. This tag needs to be in UPPER CASE. For example:
	Add-on
	ARKSTAT. This program simplifies the collection and reporting of Cupertino ARK status from field responders to the EOC.
	Collected message from the Add-on
	ARK=DeAnza
	Staffing=2 CARES, 7 CERT
	Status=Taking neighborhood requests for assistance.
	Message with Tags to be sent to Outpost
	!ARKSTAT!
	ARK=DeAnza
	Staffing=2 CARES, 7 CERT
	Status=Taking neighborhood requests for assistance.
	!/ADDON!
	3.5 Build the Aoclient run string

	All other message parameters are passed as Aoclient.exe command line parameters. One of the parameters is the file name containing the message text.
	!! What your ADD-ON needs to do: Command Line Options
	All parameters are passed to Aoclient.exe as command-line options. These options are:
	Cmd Line Option
	Description
	-a <addon_name>
	REQUIRED. Name of this Add-on.
	Example: -a ARKSTAT
	-f <file_name>
	REQUIRED. Name of the file containing the message created by the Add-on to be passed to Outpost.
	Example: -f c:\Outpost_addon\Arkstat\ArkstatMsg.txt
	-b <bbs_connect_name>
	OPTIONAL. Name of the BBS to be set for this message.
	Default: currently selected BBSExample: -b W6XSC-1
	-t <destination_list>
	OPTIONAL. List of one or more destination addresses to be set for this message. If this option is not set, then Outpost will leave this field on the message blank, or use the Default Destination (if set).
	Default: <none set>Example: -t “KN6PE, kd6tcmv@arrl.net”
	-s <subject>
	OPTIONAL. Subject to be set for this message. If Message ID is set, Outpost will automatically insert the Message ID ahead of the subject.
	If this option is not set, then the field will be blank.
	To ensure a new message ID is created (if this is an original message creation event), then precede the Subject with “++” (no quotes); this will force Outpost to load the next message ID onto the subject line.
	Default: <none set>Example: -s “++DeAnza ARK Status, OP Period #2”
	-u
	URGENT. OPTIONAL.Sets the message status to URGENT. If this option is not set, then Outpost will leave the message as not Urgent. There is no parameter that follows this option.
	Default: Not Urgent if not added to the command lineExample: -u
	-y
	Message Type. OPTIONAL.Sets the message Type. The string is one of these three values: [PVT | NTS | BUL].
	Default: PRIVATE (PVT) Example: -y NTS
	-p
	NOPOP. OPTIONAL.Determines if message will be opened automatically once it arrives in Outpost. If set, Outpost will not open the message.
	Default: Not set. Outpost will automatically open the messageExample: -p (Outpost will not open the message)
	-dlt
	DoLinkTest. OPTIONALCauses Aoclient to initiate a test connection with Opdirect. As a result of this test, either an OpdPASS or OpdFAIL file will be created in the directory where Aoclient resides.
	!! What your ADD-ON needs to do: Run a program
	1. Build the Aoclient.exe command line. For example, the following code example will set up and schedule Aoclient.exe, for instance:
	VB
	 Program = "Aoclient.exe"
	 RunLine = “ –f RunCmd.Text”
	 Result = Shell(Program & " " & RunLine)
	C++
	nRet= ShellExecute(0,"open",Prgm,Runline,0,SW_SHOWNORMAL)
	2. Check if the call to Aoclient.exe was successful. The best way to do this is by (i) checking that Aoclient completed, and then (ii) test for the presence of the Aoclient files “OpdPASS” or “OpdFAIL”, where: OpdPASS – The message was successfully passed to Opdirect. OpdFAIL – The message was not passed to Opdirect.A fail indication may be caused by: 1. Aoclient not pointing to the correct IP address for Opdirect2. Opdirect is not running.
	NOTE: The above are samples for demonstration purposes only. Refer to your programming language documentation for the exact method for scheduling a program.
	3. Watch for Aoclient.exe error messages in the event that program has a problem passing your message to Outpost.
	4 The Add-on Process
	The following describes the Add-on end to end process.
	4.1 Outpost, Program Start / Initialization

	The following occurs each time Outpost is run. If changes to any of the Launch or Add-on files are made, exit out of Outpost, and then run Outpost again to pick up all changes.
	Create Launch Menu (the Outpost Forms Menu)
	Initialize Launch Data
	Read the Launch.ini
	If found, read the Launch.local
	If found, process all INCLUDE statements; add their content as well
	Load the Launch Data Array (7 fields per launch candidate)
	Initialize Add-on Data
	Find all Add-ons in the Launch Data Array
	 If found, read the <addon_name>.ini file
	Load contents into the Add-on Data Array (13 fields per Add-on)
	Populate the Outpost > Forms Menu from the Launch Array
	End.
	4.2 Outpost > Forms, Click

	Selecting an entry from the Forms Menu will create a NEW message (implies there is no message body). The Add-on run string is based on the Menu item being an HTML, BIN, or ADD-ON message to be created.
	If HTML,
	Retrieve the correct Launch Array entry
	Build the run string (html path and option string)
	Set up the Msg ID
	Make the run string substitutions
	Find the Default Browser
	Run the browser with the run string
	If BIN,
	Retrieve the correct Launch Array entry
	Build the run string (program path and option string)
	Run the program with the run string
	If ADD-ON,
	Retrieve the correct Launch Array entry
	Retrieve the correct Add-on Data Array entry
	Get the Open Action (based on the loaded <addon.ini> Config File)
	If Open Action is “ALWAYS” or “ASK” (with a YES answer),
	Build the Run String (based on Message State)
	Make the run string substitutions
	Run the Add-on with run string
	4.3 Outpost > Open Message Form

	The message form will open either because it was “auto-popped” open by an incoming Add-on message (via Aoclient and Opdirect), or the Packet Operator manually opened the message from the Outpost message list.
	If a PacFORM,
	Process PacFORM Message
	If Open Action is “ALWAYS” or “ASK” (with a YES answer),
	Create the message file (embed parameters in the file)
	Build the run string (program, message file name)
	Run the browser with the run string
	If ADD-ON,
	Get !AddonBangID!. Look up the Addon in the Launch and Add-on Data Arrays.
	Get the Open Action (based on the loaded <addon.ini> Config File).
	If Open Action is “ALWAYS” or “ASK” (with a YES answer),
	Get Run String (based on Message State)
	Make run string substitutions
	Create the message file
	Schedule the Add-on

